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Abstract 24 

The current study investigated category learning across two experiments using face-blend 25 

stimuli that formed face families controlled for within- and between-category similarity. 26 

Experiment 1 was a traditional feedback-based category learning task, with three family names 27 

serving as category labels. In Experiment 2, the shared family name was encountered in the context 28 

of a face—full name paired-associate learning task, with a unique first name for each face. A 29 

subsequent test that required participants to categorize new faces from each family showed 30 

successful generalization in both experiments. Furthermore, perceived similarity ratings for pairs 31 

of faces were collected before and after learning, prior to generalization test. In Experiment 1, 32 

similarity ratings increased for faces within a family and decreased for faces that were physically 33 

similar but belonged to different families. In Experiment 2, overall similarity ratings decreased 34 

after learning, driven primarily by decreases for physically similar faces from different families. 35 

The post-learning category bias in similarity ratings was predictive of subsequent generalization 36 

success in both experiments. The results indicate that individuals formed generalizable category 37 

knowledge prior to an explicit demand to generalize, and did so both when attention was directed 38 

towards category-relevant similarities (Experiment 1) and when attention was directed towards 39 

individuating faces within a family (Experiment 2). The results tie together research on category 40 

learning and categorical perception and extend them beyond a traditional category learning task. 41 

Keywords: category learning, perceived similarity, memory generalization  42 
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Perceived similarity ratings predict generalization success after traditional category learning and 43 

a new paired-associate learning task  44 

Categorization helps us organize information from the world around us into meaningful 45 

clusters relevant to behavior. A hallmark of category knowledge is the ability to categorize new 46 

instances, allowing us to generalize prior knowledge and guide decisions in novel situations. 47 

Category-learning tasks have thus been widely used to study memory generalization (Knowlton & 48 

Squire, 1993; Nosofsky & Zaki, 1998; Poldrack et al., 2001; Reber, Stark, & Squire, 1998). Prior 49 

work has contended that memory generalization relies on memory representations that form during 50 

learning, linking information across related experiences (Knowlton & Squire, 1993; Schapiro, 51 

Turk-Browne, Botvinick, & Norman, 2017; Schlichting, Zeithamova, & Preston, 2014; Shohamy 52 

& Wagner, 2008; Zeithamova, Schlichting, & Preston, 2012). Other work maintains that specific 53 

memory traces are formed during learning and that generalization judgements may be computed 54 

from specific memories either on-the-fly at retrieval (Hintzman, 1984; Kruschke, 1992; Nosofsky, 55 

1988) or by linking information across experiences in response to explicit generalization demands 56 

(Carpenter & Schacter, 2017, 2018; Squire, 1992; Teyler & DiScenna, 1986; Winocur, 57 

Moscovitch, & Sekeres, 2007). Finding ways to detect category knowledge in behavior outside of 58 

generalization demands will help us to determine whether or not people spontaneously link related 59 

experiences as they are encountered.  60 

Category knowledge alters perception such that items learned to belong to the same 61 

category are perceived as more similar while items learned to belong to different categories are 62 

perceived as less similar after learning  (Beale & Keil, 1995; Folstein, Palmeri, & Gauthier, 2013; 63 

Goldstone, 1994a; Goldstone, Lippa, & Shiffrin, 2001; Livingston, Andrews, & Harnad, 1998; 64 

Rosch & Mervis, 1975). Thus, measures of perceived similarity may be useful for assessing 65 
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category knowledge without creating an explicit generalization demand. In the current report, we 66 

conducted two experiments testing whether measures of perceived similarity can reveal the 67 

formation of category knowledge prior to an explicit generalization test. Participants were shown 68 

faces that belonged to three categories (families), designated by a family name. Face stimuli were 69 

created as blends of never-seen “parent” faces, resulting in increased physical similarity between 70 

faces that shared a parent (Figure 1). Some physically similar faces were members of the same 71 

family while others were members of different families, allowing us to dissociate the effect of 72 

category membership from physical similarity.  73 

In Experiment 1, faces were encountered in the context of a traditional feedback-based 74 

category learning task, emphasizing similarities among faces belonging to the same family. We 75 

tested participants’ ability to extract commonalities across faces belonging to the same family and 76 

generalize family names to new face-blend stimuli. We also measured category knowledge 77 

indirectly, using perceived similarity ratings immediately before and after learning to determine to 78 

what degree people link related experiences prior to explicit demands to generalize. The category 79 

bias in perceived similarity ratings after learning was related to subsequent generalization success 80 

to determine the utility of using perceived similarity ratings as a measure of category learning. The 81 

same measures were collected in Experiment 2, where faces were encoded through observational, 82 

face—full name paired-associate learning. While family names were identical to Experiment 1, 83 

with each family name shared across several faces, first names were unique for each face, requiring 84 

the participant to differentiate faces within each family. This allowed us to test to what degree the 85 

results from Experiment 1 replicate outside of a traditional category learning task context.  86 
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Methods 87 

Participants  88 

Healthy participants—N = 39 in Experiment 1 and N = 43 in Experiment 2—were recruited 89 

from the University of Oregon community via the university SONA research system and received 90 

course credit for their participation. Except for the learning phase, all procedures were identical 91 

across experiments and will be presented together. All participants provided written informed 92 

consent, and experimental procedures were approved by Research Compliance Services at the 93 

University of Oregon. From Experiment 1, four participants were excluded due to chance 94 

performance (accuracy ≤ .33) in categorizing the training faces. From Experiment 2, participants 95 

were excluded for failing to make responses on more than 25% of categorization trials (n = 3) and 96 

incomplete data (n = 1). After exclusions, analyses were carried out with the remaining 35 97 

participants for Experiment 1 (Mage = 20.43, SDage = 2.58, 18-32 years, 21 females) and 39 98 

participants for Experiment 2 (Mage = 19.26, SDage = 1.13, 18-23 years, 21 females). These sample 99 

sizes provide 80% power for detecting medium size (d ≥ 0.5) effects using planned one-sample 100 

and paired t-tests and strong (r ≥ .5) correlations, as determined in G-Power (Faul, Erdfelder, 101 

Buchner, & Lang, 2009; Faul, Erdfelder, Lang, & Buchner, 2007). 102 

Stimuli 103 

Stimuli were grayscale images of blended faces constructed by morphing two unaltered 104 

face images together using FantaMorph Version 5 by Abrosoft. Prior work has shown that category 105 

effects differ based on whether morphed faces are constructed from parents within one race versus 106 

across two races (Levin & Angelone, 2002). Thus, we restricted all parent faces to be Caucasian 107 

to ensure that the resulting face-blend stimuli were comparably similar to all other faces with a 108 
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shared parent. Additionally, all parent faces were of a single gender (male) to ensure that face-109 

blends maintained a realistic appearance. 110 

The stimulus structure is presented in Figure 1. For each participant, three category-111 

relevant parent faces and three category-irrelevant parent faces were randomly selected from a 112 

total set of twenty faces. Each of the three category-relevant parent faces were individually 113 

morphed with each of the three category-irrelevant parent faces with equal weight given to each 114 

parent face (50/50 blend). The resulting nine blended faces were then used as training stimuli. 115 

Faces that shared a category-relevant parent shared a family name (belonged to the same category). 116 

Faces that shared a category-irrelevant parent belonged to different families. As faces sharing any 117 

Miller 

Category

Irrelevant 

Parents

Wilson 

Training

…

Generalization

Davis

Shared Parent
(same family name)

Shared Parent
(different family name)

Not Related

Category 

Relevant

Parents

…

Figure 1. Example face-blend stimuli. Parent faces on the leftmost side are designated “category 

relevant parents” as these parents determined family membership—Miller, Wilson, or Davis—during 

learning and generalization. Parent faces across the top are designated “category-irrelevant parents” as 

these parents introduced physical similarity across families but did not determine categories. Three 

category-irrelevant parents were used for learning. The rightmost three category-irrelevant parents are 

a subset of new faces used for generalization. Parent faces were never viewed by participants, only the 

resulting blended faces. The face blending procedure produced pairs of faces that shared a category-

relevant parent and belonged to the same family (shared parent - same family name; example indicated 

with dark grey box), pairs of faces that shared a category-irrelevant parent and belonged to different 

families (shared parent- different family name; example indicated with medium grey box). Non-

adjacent pairs did not share a parent and were not related (example indicated with light grey boxes).  
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parent (category-relevant or category-irrelevant) shared physical traits, physical similarity alone 118 

was not diagnostic of category membership. Generalization stimuli were new faces created by 119 

blending category-relevant parent faces with fourteen remaining parent faces not used for creation 120 

of the training faces.  121 

Procedure 122 

Both experiments consisted of the following phases: passive viewing, pre-learning 123 

similarity ratings, learning (different in each Experiment), passive viewing, post-learning 124 

similarity ratings, and category generalization. Additionally, Experiment 2 included cued-recall of 125 

face-name associations before the category generalization phase. Self-paced breaks separated the 126 

phases. 127 

Passive viewing. To familiarize participants with the stimuli and give them an idea of the 128 

degree of similarity between all faces before collecting perceived similarity ratings, participants 129 

first viewed each of the nine training stimuli individually, once in a random order without any 130 

labels and without making any responses. Face-blends were shown for 3s with a 1s inter-stimulus-131 

interval (ISI). Passive viewing of the face-blends immediately before the pre- and post-learning 132 

similarity rating phases was also included as a pilot of a future neuroimaging experiment. No 133 

responses were collected during viewing. 134 

 Pre-learning similarity ratings. To validate that participants were sensitive to the 135 

similarity structure among faces introduced by the blending process and to obtain baseline 136 

similarity ratings, participants rated the subjective similarity of pairs of faces to be used during the 137 

learning phase. All possible 36 pairwise comparisons of the 9 training faces were presented and 138 

participants rated the similarity of the two faces on a scale from one to six (1 = two faces appeared 139 

very dissimilar, 6 = two faces appeared very similar). Face pairs and the similarity rating scale 140 
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were displayed for 5s with a 1s ISI. Face pairs were then binned into three conditions for analyses 141 

depending on whether they 1) shared a parent and a family name, 2) shared a parent face but did 142 

not share a family name, or 3) did not share a parent face (see example pairs in Figure 1).  143 

Learning phase.  144 

Experiment 1: Feedback-based category learning. On each trial, a training face was 145 

presented on the screen along with family names (Miller, Wilson, Davis) as response options. 146 

Participants were instructed to indicate family membership via a button press and received 147 

corrective feedback after each trial. Each face was viewed simultaneously with the family name 148 

response options on the screen for 4s, received corrective feedback for 1s, and trials were separated 149 

by a 1s ISI. Each face was presented 16 times total, evenly split across 2 blocks. 150 

Experiment 2: Observational learning of face—full name associations. To test the 151 

robustness of category learning outside of a traditional categorization task, Experiment 2 provided 152 

an opportunity to link faces from the same families in the context of a face—full name associative 153 

learning task. On each trial, participants studied a face-name pair and then made a prospective 154 

memory judgement on a scale from one to four (1 = definitely will not remember, 4 = definitely 155 

will remember). Prospective memory judgments were included to facilitate participant engagement 156 

with the observational learning task and were not considered further. Family names were identical 157 

to Experiment 1 and shared across faces whereas first names were unique to each face. While the 158 

inclusion of face-specific first names required participants to differentiate individual faces, the 159 

inclusion of the shared family names provided an opportunity to form links between related faces. 160 

The fact that family names were repeated across faces or that there was a category structure among 161 

faces was not explicitly emphasized to participants. Each face-name pair was presented on screen 162 

for 2s after which the prospective memory judgment scale appeared beneath the face-name pair 163 
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for an additional 2s. Trials were separated by a 4s ISI. Participants viewed each face-name pair 164 

twelve times, evenly split across 3 blocks. 165 

Post-learning similarity ratings. Perceived similarity ratings were repeated after the 166 

learning phase with the same timing as pre-learning ratings. Of main interest was a potential 167 

category bias in perceived similarity, i.e., whether faces that shared a parent would be rated as 168 

more similar when they had the same family name than when they had different family names.  169 

Cued recall of face-name associations. Experiment 2 included a self-paced cued-recall 170 

task of face-name associations. Participants viewed each training face individually on a computer 171 

screen and handwrote the full name of each face on a sheet of paper. Participants advanced the 172 

trials at their own pace but were not able to skip faces or go back and look at faces already named. 173 

Participants were encouraged to make their best guess as to the first and family names of each face 174 

even if they were not confident in their memory.  175 

Generalization phase. As the last phase of both Experiments, category knowledge was 176 

tested directly using categorization of old and new faces. In addition to the nine training faces, 177 

participants categorized 42 never-seen faces, consisting of 14 new blends of each of the three 178 

category-relevant parent faces. Participants were asked to select via button press the family name 179 

for each face, which were presented individually for 4s, from the three options (Miller, Wilson, 180 

Davis) presented on the screen. Trials were separated by an 8s ISI. No feedback was provided, and 181 

participants were encouraged to make their best guess when unsure of family membership. 182 

Results 183 

Learning Phase 184 

Experiment 1: Feedback-based category learning. Overall percent correct across 185 

training was 76% (SD = 14%), which was well above chance (.33 for three categories; one-sample 186 
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t(34) = 17.66, p < .001, d = 3.01).  Categorization accuracy improved across training, from 66% 187 

in the first half to 85% in the second half (t(34) = 9.72, p < .001, d = 1.63), demonstrating learning 188 

over time.  189 

Experiment 2: Observational learning of full name—face associations. Observational 190 

learning provided no measure of accuracy from the learning phase. Therefore, in Experiment 2 a 191 

cued-recall task was included to assess how well participants learned the face-full name pairs. 192 

Participants recalled on average 52% of first names and 65% of family names.  193 

Similarity Ratings  194 

We compared mean face similarity ratings in each pair-type (shared parent-same family 195 

name, shared parent-different family name, not related) using repeated-measures ANOVA. 196 

Analyses were performed separately in each phase (pre-learning, post-learning). We also assessed 197 

learning-related rating changes by comparing ratings across phases. For all ANOVAs, a 198 

Greenhouse-Geisser correction for degrees of freedom (denoted as GG) was used wherever 199 

Mauchly’s test indicated a violation of the assumption of sphericity. 200 

Experiment 1. Pre-learning ratings (Fig. 2A) demonstrated that participants were sensitive 201 

to the physical similarity structure introduced with the face-blending procedure. A one-way, 202 

repeated measures ANOVA showed a significant effect of pair type (F(2, 68) = 58.74, p < .001, 203 

𝜂𝑝
2 = .63), driven by lower perceived similarity for faces that did not share a parent compared to 204 

those that shared a parent (with or without shared family name, both t > 9.17, p < .001, d > 1.50). 205 

Faces that shared a parent were perceived as equally similar to one another irrespective of whether 206 

they also shared the same—not yet presented—family name (t(34) = -0.17, p = .87, d = 0.03).   207 

Post-learning ratings (Fig. 2B) revealed a category bias on perceived similarity: pairs of 208 

faces sharing a parent and family name were perceived as significantly more similar than faces 209 
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that shared a parent but not a family name (Mdiff = 0.72, SDdiff = 1.41, t(34) = 3.02, p = .005, d = 210 

0.51). Faces that shared a parent remained rated as more similar than unrelated faces (both t > 6.85, 211 

p < .001, d > 1.15). 212 

To further test the effect of learning, we conducted a 2 x 3 (timepoint [pre-learning, post-213 

learning] x pair-type [shared parent-same family name, shared parent-different family name, not 214 

related]) repeated-measures ANOVA. There was no main effect of timepoint (F(1, 34) = 0.04, p = 215 

.85, 𝜂𝑝
2 = .001). There was a significant main effect of pair-type (F(1.63, 55.38) = 61.21, p < .001, 216 

𝜂𝑝
2

  = .64, GG), and a significant interaction between timepoint and pair-type (F(1.64, 55.88) = 217 

11.85, p < .001, 𝜂𝑝
2

  = .25, GG). Follow-up pre-post comparisons within each pair-type (Fig. 2C) 218 

revealed that this interaction was driven by both a significant increase in similarity ratings for 219 

faces sharing a parent and a family name (t(34) = 3.02, p = .005, d = 0.51) and a significant 220 

decrease in similarity ratings for faces only sharing a parent but not a family name (t(34) = -2.33, 221 

p = .026, d = -0.39). There was no significant change in similarity ratings for faces that did not 222 

share a parent (t(34) = -0.18, p = .86, d = -0.03).  223 

Experiment 2. As in Experiment 1, participants were sensitive to the face similarity 224 

structure. Pre-learning similarity ratings (Fig. 2E) differed significantly among pair types (F(1.46, 225 

55.47) = 72.22, p < .001, 𝜂𝑝
2

 = .655, GG), driven by lower perceived similarity of faces that did not 226 

share a parent compared to faces that shared a parent (with and without shared family names, both 227 

t > 10.65, p < .001, d > 1.70). For faces that shared a parent, ratings did not significantly differ 228 

when face pairs had the same or different—not yet presented—family names (t(38) = 1.82, p = 229 

.077, d = 0.29). A category bias was found in post-learning ratings (Fig. 2F) with pairs of faces 230 

sharing a parent and family name perceived as significantly more similar than faces that shared a 231 

parent but not a family name (Mdiff = 0.58, SDdiff = 1.52; t(38) = 2.39, p = .022, d = 0.38). 232 
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Testing the effect of learning, the 2 x 3 (timepoint x pair-type) repeated-measures ANOVA 233 

revealed a significant main effect of timepoint (F(1, 38) = 5.20, p = .028, 𝜂𝑝
2

 = .120), with overall 234 

similarity ratings being lower post-learning than pre-learning (Mpre = 3.49, SDpre = 0.51; Mpost = 235 

3.33, SDpost = 0.59; t(38) = -2.28, p = .028, d = 0.37). There was also a significant main effect of 236 

pair-type (F(1.28, 48.60) = 60.42, p < .001, 𝜂𝑝
2

 = .614, GG), and a significant interaction between 237 

timepoint and pair-type (F(1.67, 63.37) = 4.21, p = .03, 𝜂𝑝
2

 = .10, GG). Follow-up pre-post 238 

comparisons within each pair-type (Fig. 2G) revealed that the interaction was driven by a 239 

significant decrease in similarity ratings for faces sharing a parent but not a family name (t(38) = 240 

-3.71, p = .001, d = -0.59), but there were no significant changes in similarity ratings for other pair-241 

Figure 2. Top panel are results from the traditional category learning experiment. Bottom panel (shaded grey) are 

results from the face-name paired associate learning experiment. A & E. Average similarity ratings for faces that 

share a parent and family name, faces that only share a parent, and faces that don’t share any parents before 

learning. B & F.  Average similarity ratings for the same pairwise comparisons after learning. Asterisk represents 

a significant (p < .05) difference in post-learning similarity ratings for faces that belong to the same family vs. 

faces that share physical similarity but belong to different families (i.e. a category bias in perception). C & G. 

Changes in similarity ratings from pre- to post-learning. Asterisk denotes significant (p < .05) increases and 

decreases in perceived similarity for faces. D & H. Positive relationship between indirect (category bias in 

perception) and direct (categorization accuracy for new faces) measures of memory generalization.  
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types (both t < -1.04, p > .30, d < -0.18). Thus, changes in perceived similarity were affected by 242 

category membership in both experiments.  243 

Although not significant (p = .077), we noted a numerical tendency towards a category bias 244 

in pre-learning similarity ratings. Parent faces were randomly selected for each participant to serve 245 

as category-relevant or category-irrelevant parents, but some of the category-relevant parent faces 246 

may have been more salient, leading to a numerically greater pre-learning similarity rating. Thus, 247 

we tested whether the post-learning category bias on perceived similarity was reliably greater than 248 

pre-learning bias. A 2 x 2 (timepoint [pre-learning, post-learning] x pair-type [shared parent-same 249 

family name, shared parent-different family name]) repeated-measures ANOVA showed only a 250 

marginal interaction between timepoint and condition (F(1, 38) = 2.87, p = .098, 𝜂𝑝
2 = .07). We 251 

thus controlled for pre-learning similarity rating differences in subsequent analyses that assessed 252 

the relationship of post-learning ratings and generalization performance. 253 

Category Generalization 254 

Experiment 1. Participants correctly categorized 85% of training faces (SD = 17%) and 255 

74% of new faces (SD = 13%), which was well above chance (.33 for three categories; both one-256 

sample t(34) > 18.12, p < .001, d > 3.06). A paired-samples t-test showed higher categorization 257 

accuracy for the training faces than for the new faces (t(34) = 5.48, p < .001 , d = 0.93). We next 258 

tested whether the category bias on perceived similarity ratings (an indirect measure of category 259 

knowledge) was related to subsequent generalization success. A Pearson’s correlation showed a 260 

significant positive relationship between the category bias on perceived similarity ratings and 261 

generalization accuracy (r(33) = .64, p < .001; Fig. 2D). The category bias on perceived similarity 262 

in the post-learning phase was a significant predictor of subsequent generalization performance 263 

even when pre-learning similarity ratings were considered (multiple regression: pre-learning 264 
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differences in perceived similarity β = .30, t(34) = 1.80, p = .08; post-learning category bias β = 265 

.46, t(34) = 2.75, p = .01).   266 

Experiment 2. Participants correctly categorized 70% of training faces (SD = 23%) and 267 

64% of new faces (SD = 22%), which was well above chance (.33 for three categories; both one-268 

sample t(38) > 8.65, p < .001, d > 1.38). A paired-samples t-test showed higher categorization 269 

accuracy for the training faces than for new faces (t(38) = 2.12, p = .04, d = 0.34). The post-270 

learning category bias on perceived similarity ratings was significantly correlated with 271 

generalization accuracy (Pearson’s r(37) = .48, p = .002; Fig. 2H). Further, the category bias was 272 

a significant predictor of subsequent generalization performance even when pre-learning similarity 273 

ratings were controlled for (multiple regression: pre-learning category bias β = -.22, t(38) = -0.86, 274 

p = .40; post-learning category bias β = .66, t(38) = 2.57, p = .01).  275 

Discussion 276 

The current study investigated category learning using measures of perceived similarity 277 

and category generalization across two experiments. Face-blend stimuli were used to control 278 

physical similarity within and across categories (families). Experiment 1 was a traditional 279 

feedback-based category learning task, with three family names serving as category labels. In 280 

Experiment 2, the shared family name category label was encountered in the context of a face-full 281 

name paired-associate learning task, where first names were unique for each face. We were 282 

interested in how well people generalize family names to new faces in the two tasks and to what 283 

degree category bias in perceived similarity ratings indicates the formation of category knowledge 284 

prior to explicit generalization demands.  285 

Participants were able to successfully apply category labels to new faces in both 286 

experiments, demonstrating that category information can be extracted in support of generalization 287 
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even when task goals do not emphasize learning categories at encoding. Past work has shown that 288 

individuals can extract category structures when not instructed using patterns of physical similarity 289 

as category cues (Aizenstein et al., 2000; Love, 2002; Reber, Gitelman, Parrish, & Mesulam, 290 

2003). We extend these prior findings by showing that category structure can also be extracted 291 

when category membership is dissociable from physical similarity and further when individuals 292 

are actively learning information that differentiates individual items even within the same 293 

category.  294 

Learning-related changes in perceived similarity ratings were observed in both 295 

experiments. In Experiment 1, consistent with prior studies (Beale & Keil, 1995; Goldstone, 296 

1994a, 1994b; Goldstone et al., 2001; Rosch & Mervis, 1975), similarity ratings for faces within 297 

a family increased while similarity ratings for faces that were physically similar but belonged to 298 

different families decreased. These shifts in perceived similarity may reflect allocation of selective 299 

attention to features that are category-relevant while diverting attention away from category-300 

irrelevant features (Goldstone & Steyvers, 2001; Kruschke, 1996; Nosofsky, 1991). In contrast, in 301 

Experiment 2 the face-name paired-associate learning was associated with an overall decrease in 302 

similarity ratings from pre- to post-encoding, driven primarily by decreased similarity for faces 303 

that were physically similar but belonged to different families. This decrease in similarity ratings 304 

could reflect learning-related differentiation of representations to minimize confusability and 305 

interference (Chanales, Oza, Favila, & Kuhl, 2017; Favila, Chanales, & Kuhl, 2016; Hulbert & 306 

Norman, 2015; Kim, Norman, & Turk-Browne, 2017; Lohnas et al., 2018).  Changes in perceived 307 

similarity ratings were modulated by category membership of the faces in both experiments, 308 

indicating that people tended to link faces with a shared last name even outside the context of a 309 

traditional category learning task.  310 
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 The inclusion of similarity ratings also allowed us to address the question of whether or 311 

not people spontaneously link related information in service of generalization prior to explicit 312 

generalization demands. The category bias in similarity ratings observed after learning predicted 313 

subsequent generalization of category information to new examples in both experiments, 314 

indicating that both measures index the same category knowledge formation. Critically, the 315 

category bias was measured after learning but before the explicit generalization test, indicating 316 

that people likely linked related faces at encoding (see also Shohamy & Wagner, 2008; 317 

Zeithamova, Dominick, & Preston, 2012) rather than in response to generalization demands. Our 318 

results also extend prior studies on changes in perceived similarity as a result of explicit instruction 319 

where attention is directed towards category-relevant similarities (Goldstone, 1994b, 1994a; 320 

Livingston et al., 1998) to a novel task where attention was directed towards individuating 321 

differences. Observation of the category bias after the face-name paired-associate learning 322 

indicates that the mere presence of a shared piece of information biased perceived similarity in 323 

many participants.  324 

In summary, our findings indicate that generalizable category representations form at 325 

encoding, prior to explicit generalization demands. Individuals spontaneously linked related 326 

experiences to form conceptual knowledge even when learning goals required participants to learn 327 

individuating differences between stimuli. The relationship between category bias in similarity 328 

ratings and subsequent generalization further indicates that measures of perceived similarity are 329 

useful for measuring category learning without explicit demands to generalize. Building upon long 330 

lines of research on category learning (for reviews see Ashby & Maddox, 2011; Seger, 2008) and 331 

categorical perception (Etcoff & Magee, 1992; Liberman, Harris, Hoffman, & Griffith, 1957; 332 

Livingston et al., 1998; for reviews see Goldstone & Hendrickson, 2010; Harnad, 2006), the 333 
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current work links generalization and perception together and extends prior findings beyond 334 

traditional category learning paradigms. 335 

Open Practices 336 

None of the experiments discussed in the current report were preregistered. Data and 337 

materials for all experiments are freely available in the Blended-Face Similarity Ratings and 338 

Categorization Tasks repository on the Open Science Framework 339 

(https://osf.io/e8htb/?view_only=ca5a189813b14dfebd9804151bc1a1ed).   340 
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